Alternative methods for marking otoliths: enriched stable isotopes and fluorescent dyes

Andrew R. Munro

Native fish stocking - Australia

- > 60 million native fish stocked in MDB over past 30 years
- Fate of stocked fish unknown
 - success of stocking
 - effects on ecology
- Lack of suitable methods for marking hatchery fish
 - CWT
 - Alizarin complexone

Developing methods for marking hatchery fish

- Enriched stable isotopes
 - Otolith marking experiments
 - Fingerling immersion
 - Larval immersion
 - Broodstock injection (transgenerational marking)
- Osmotic induction of fish with fluorescent compounds

Stable isotopes

Barium

natural relative abundances

137
Ba = 11.30%

138
Ba = 71.70%

$$\frac{^{138}Ba}{^{137}Ba} = \frac{71.70}{11.30} = 6.38$$

Non radioactive

Enriched stable isotopes

BaCO₃ – enriched in ¹³⁷Ba

11.30%

Enriched Isotopes

Hypothesis: can alter otolith isotopic ratios by exposing fish to specific isotopes

Fingerling immersion

Reared juvenile golden perch in varying levels of enriched Ba for different lengths of time

Analysis

Otolith analysis: either whole or sectioned otoliths

Transects/spot analyses

Measured isotopes of interest (e.g.¹³⁷Ba & ¹³⁸Ba)

LA-ICPMS (single collector)

Fingerling immersion results

8 d immersion – 15 μ g¹³⁷Ba/L

Fingerling immersion results

Significant mark 1 d @ 15 µg/L

100% marked 8 d @ 15 μg/L

Fingerling immersion summary

- Altered otolith Ba isotope ratio
- 100% mark success 8 d @ 15μg/L
- Unambiguous mark not natural
- Stress free
- Requires extended holding time

Brood stock injection

Length of time prior to hormone injection

Maternal dose rate (137Ba)

	0 h	1 d	21 d
20 μg/g	2 fish	2 fish	x
40 μg/g	2 fish	2 fish	2 fish

Brood stock injection results

Maternal parent injected with 40 μg/g of enriched ¹³⁷Ba at same time hormone

Brood stock injection results

Brood stock injection summary

- Altered otolith Ba isotope ratio
- 40 µg/g at time of hormone 100% mark
- Fits in with standard hatchery practices
- Variable spawning success of injected fish

Larval immersion

Reared larval golden perch in varying levels of enriched Ba for different lengths of time

Woodcock et al. (2011) EFF

Larval immersion results

Larval immersion summary

- compatible with hatchery procedures
- 100% mark success
- high density = less isotope
- mark location known
- most cost effective
- variable survival to stocking
 - 30–50%

Osmotic induction marking

Method developed for marking Atlantic salmon with calcein (Mohler 2003)

Also trialed alizarin red S as a cheaper alternative

9 months post-marking

Dissecting microscope - white light

9 months post-marking

Dissecting microscope - white light

9 months post-marking

Dissecting microscope - white light

Dissecting microscope - fluorescence filters

Control

Calcein treatment

ARS treatment

Non-lethal field detection

 Practical and objective way of identifying marks on live fish in the field

Non-lethal field detection

GFP portable fluorometer

Calcein marked fish - 26 months

Osmotic induction marking summary

Advantages:

- Marking procedure is easy and quick (15 min)
- Detectable on live fish in the field
- Excellent accuracy (100% after 18 months in field, 26 months in lab)

Disadvantages:

- Adjustments to hatchery protocols required
- Chemicals must be disposed of appropriately
- Unknown longevity of external marks

Marking Costs

Method	\$ per 1,000 fingerling	Notes
Isotope immersion (137Ba)		
fingerlings	9.80	15 μg/L @ 10 fish/L
larvae	1.60	30 μg/L @ 250 fish/L
Isotope injection (137Ba)	0.66 - 19.14	20 μg/g
Osmotic induction		
Calcein	37.00	0.5% @ 800 fish/L
ARS	0.50	0.05% @ 800 fish/L

Cost comparison for marking

Method	\$ per 1,000	
Immersion		
fingerling	9.80	
larvae	1.60	
Injection	0.66 - 19.14	
Calcein (OI)	37.00	
ARS (OI)	0.50	
Thermal	6.25	
CWT	83	
ALC (10-400 mg/L)	11.48 - 459	

Cost comparison for reading marks

	reading cost/fish	marking/1,000
Enriched isotopes	\$14.50 - \$45.00	\$1.60
Calcein & field detector	\$0.00	\$37.00
Thermal marking	\$5.00 - \$14.00	\$6.25
Coded wire tags	\$2.14	\$83.00
Alizarin complexone	\$3.75	\$11.48

Scaling up

Osmotic induction Calcein marking

- 60,000 fish
- batches ~4,000 5,000 fish

Larval marking w/isotopes

- ~100,000 fish
- few ml isotope solution

Multiple unique batch marks

Multiple enriched stable isotopes 4 Ba isotopes → 15 unique combinations

Woodcock et al. (2011) EFF

Multiple unique batch marks

Many more if include isotopes of other elements (e.g. Sr, Mg)

8 unique marks; 96% mark success

Munro et al. (2008) CJFAS

Summary

- All methods able to produce distinctive mark in fish otoliths
- Most cost effective method larval immersion in enriched isotopes
- Combine with osmotic induction at fingerling stage
 - → external & internal mark
- Investigate effects on growth & survival
- Investigate survival & dispersal of stocked fish, & impacts of stocking
- Methods have potential for use in other areas (e.g. larval dispersal)

Acknowledgements

Co-investigators: Bronwyn M. Gillanders

David A. Crook

Skye H. Woodcock Andrew C. Sanger

Funding: Australian Research Council Murray-Darling Basin Authority

And many others who have helped.

